Thursday, April 3, 2014

IIT RAMAIAH'S CLASS ROOM

సమీకరణాల విశ్లేషణ ద్వారా సమస్యా సాధన ! సమీకరణాల సాధనలో 'డైఫంటైన్' సూచించిన అంశాలను ఆధారంగా చేసుకొని చిన్నచిన్న సమీకరణాలే కాదు, పెద్దపెద్ద సమీకరణాలను కూడా సాధించవచ్చు. మొదట పైపైన గమనిస్తే, సాధన కనుక్కోవటం దాదాపుగా అసాధ్యంగా కనిపించే సమీకరణాలు, కాస్త విశ్లేషణాత్మకంగా చూసినపుడు సులభంగా సాధించవచ్చు. అలాంటి ఉదాహరణ ఒకటి చూడండి. ప్ర : (x2+1) (y2+1)+2(x-y) (1-xy)=4 (1+xy) సమీకరణాన్ని సాధించండి. (x,y లు పూర్ణ సంఖ్యలు) జ :x,y లు అనేవి పూర్ణ సంఖ్యలుగా ఇచ్చారు. ఈ ఒక్క అంశం ఆధారంగా చేసుకొని సమీకరణ సాధనకు అవసరమయిన మార్గాన్ని తయారు చేసుకోవచ్చు. అదేలాగంటే పూర్ణ సంఖ్యను దేనిని తీసుకున్నప్పటికీ దానిని రెండు కారణాంకాల లబ్ధంగా రాయవచ్చు. ఉదాహరణకు 6 అనే సంఖ్యను తీసుకుంటే దానిని క్రింది విధంగా రాయవచ్చు. 6=3x2 =-3x-2 =6x1 =-6x-1 ఇలా 6ను రెండు సంఖ్యల లబ్ధంగా 4 రకాలుగా రాయవచ్చు. ఇపుడు ఇవ్వబడిన సమీకరణాన్ని గమనిద్దాం. (x2+1) (y2+1) +2 (x-y) (1-xy) = 4 (1+xy) దీనిని కారణాంకాల లబ్ధంగా రాయటానికి వీలుగా ఉండేలా మొదట మార్పు చేయాలి. క్రింది విధంగా మార్చి రాయటం వల్ల అది వీలవుతుంది. x2+y2+x2 x y2+1+ 2(x-y) (1-xy)= 4+4xy x2+y2+x2 x y2+1+2 (x-y) (1-xy)-4xy=4 ఇపుడు కుడివైపున 4 అనే పూర్ణ సంఖ్య ఉంది. దీనిని రెండు సంఖ్యల లబ్ధంగా రాయవచ్చు. అంటే ఎడమ వైపున కూడా అలాగే రాయటానికి ప్రయత్నించాలి. అది క్రింది విధంగా చేయవచ్చు. x2+y2+x2y2+1+ 2(x-y) (1-xy)-2xy-2xy-4 దీని నుంచి (x-y)2 మరియు (1-xy)2 స్వరూపాన్ని పొందవచ్చు. ఎందుకంటే (x-y)2= x2+y2-2xy (1-xy)2= 1+x2y2 - 2xy అవుతుంది. అందుచే x2+y2-2xy+1+x2y2=2xy+2(x-y) (1-xy)=4 అని రాయవచ్చు. అపుడది (x-y)2+ (1-xy)2+2 (x-y) (1-xy)=4 అవుతుంది. దీని నుంచి [(x-y)+ (1-xy)]2 =4 అని రాయవచ్చు. x-y, 1-xy లను వేర్వేరు పదాలుగా తీసుకోవచ్చు. అంటే (x-y)+(1-xy) ని కూడా రెండు కారణాంకాల లబ్ధంగా రాయవచ్చు. ఇది (1+x) (1-y) కి సమానమవుతుంది. అంటే సమీకరణం క్రింది విధంగా మారిపోతుంది. [(1+x) (1-y)]2=4, అంటే [(1+x) (1-y)]=+2 అవుతుంది. దీని నుంచి (1+x) (1-y)=2 మరియు (1+x) (1-y)=-2 గా రాయవచ్చు. ప్రతీ సందర్భంలోనూ 2 ను రెండు రకాలుగా కారణాంకాలుగా విభజించవచ్చు. అనగా (1+x) (1-y)=2x1 లేదా (1+x) (1-y)=2x-1 అని రాయవచ్చు. అంటే 1+x=2 మరియు 1-y=1 నుంచి x=1,y=0 గా సాధన వస్తుంది. అలాగాక (1+x) (1-y)=1x2 గా తీసుకున్నపుడు 1+x=1 మరియు 1-y=2 వల్ల x=0,y=-1 గా సాధన వస్తుంది. అంటే ఈ సందర్భంలో రెండు సందర్భాలలో రెండు రకాలుగా సాధనలు వస్తాయి. (x,y) = (1,0) లేదా (0,-1) లు సాధనలు అవుతాయి. అదే విధంగా +2ను 2x1 లేదా -2x-1 అని గానీ రాయవచ్చు. ఈ సందర్భంలోనూ పైన చెప్పినట్లుగా సాధన కనుక్కోవచ్చు. (1+x) (1-y)= -2x-1, దీని నుంచి 1+x=-2, 1-y=-1 అని రాయవచ్చు. అంటే x=-3, y=2 అవుతుంది. అదే విధంగా (1+x) (1-y)= -1x-2గా రాసినపుడు 1+x=-1 మరియు 1-y=-2 అని రాయవచ్చు. అపుడు x=-2,y=3 అవుతుంది. అంటే ఈ సందర్భంలోనూ రెండు సాధనలుంటాయని అర్థం. అంటే (x,y)= (-3,2) లేదా (-2,3) అవుతుంది. అదే విధంగా -2 ను తీసుకున్నప్పుడు 2x-1 లేదా -2x1 గా దానిని రెండు కారణాంకాలుగా విడదీసి రాయవచ్చు. ఇలా ఒకే సమీకరణం ఒకటి కంటే ఎక్కువ చరరాసులతో ఉండటమే గాక, ఒకటి కంటే ఎక్కువ సాధనలు కూడా కలిగి ఉండటాన్ని గమనించవచ్చు. - వ్యాసకర్త : గణిత శాస్త్ర నిపుణులు